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Abstract

Objective—An equation was developed for estimating hand activity level (HAL) directly from 

tracked RMS hand speed (S) and duty cycle (D).

Background—Table lookup, equation, or marker-less video tracking can estimate HAL from 

motion/exertion frequency (F) and D. Since automatically estimating F is sometimes complex, 

HAL may be more readily assessed using S.

Methods—Hands from 33 videos originally used for the HAL rating were tracked to estimate S, 

scaled relative to hand breadth (HB), and single-frame analysis was used to measure D. Since HBs 

were unknown, a Monte Carlo method was employed for iteratively estimating the regression 

coefficients from US Army anthropometry survey data.

Results—The equation: , R2 = 0.97, had a residual range ±0.5 

HAL.

Conclusions—The S equation superiorly fit the Latko (1997) data and predicted independently 

observed HAL values (Harris, 2011) better (MSE=0.16) than the F equation (MSE=1.28).

Practitioner Summary—An equation was developed for estimating the HAL rating for the 

ACGIH Threshold Limit Value® based on hand RMS speed and duty cycle. Speed is more readily 

evaluated from videos using semi-automatic markerless tracking, than frequency. The speed 

equation predicted observed HAL values much better than the F equation.
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1. Introduction

The American Conference of Government Industrial Hygienists (2001) Threshold Limit 

Value® (TLV®) for Hand Activity Level (HAL) rating originates from Latko et al. (1997) 

where 33 jobs were estimated by a team of expert raters on a 10-point visual analog scale 

based on hand speed and rest pauses. It may also be determined from a lookup table, which 

is part of the TLV® by measuring exertion frequency (F) and percent duty cycle (D) where:

Conventional methods for ascertaining the HAL rating for a job depend on a trained 

observer viewing workers performing the job on site or observing a video of the job off site. 

The process is often labor intensive and there may be differences in ratings between 

observers. An automated analysis of the job would be more objective and less obtrusive and 

may be suitable for a real-time, direct reading exposure assessment instrument for HAL 

rating. Such an approach depends on direct measurements of hand movements during actual 

work.

Repetitive motion derives from the cyclical nature of manual work (Radwin and Lin, 1993). 

Repetition can be described using traditional industrial engineering work methods to identify 

the fundamental movements and exertions required to perform a job (Armstrong, Radwin 

and Hansen, 1986). The time required to perform a task can be determined directly through 

time study or predetermined time systems, and thus the frequency can be estimated from the 

period of fundamental elemental times. Repetitive motion can also be quantified by 

measuring movements and exertions.

A variety of electronic instruments for measuring human kinematics of the upper limb, such 

as electrogoniometers, have previously been used to quantify motions of the hand and wrist 

for different attributes of work using direct measurements (Buchholz & Wellman, 1997; 

Jonsson & Johnson, 2001; Schoenmarklin and Marras, 1993; Marshall, Mozrall, & Shealy, 

1999). These measurements were used for evaluating hand kinematics, such as speed and 

acceleration, as well as evaluating repetition. Several studies have attempted to automate the 

analysis of repetitive motion measurement of in the workplace (Bhattacharya, et al., 1999; 

Person, Hodgson, & Nagy, 2001). Spectral analysis of electrogoniometer data was proposed 

as an efficient method for quantifying repetitive motion frequency that agreed closely with 

observational analysis and was more precise (Juul-Kristensen, Hansson, Fallentin, Andersen, 

& Ekdahl, 2001; Radwin & Lin, 1993; Yen & Radwin, 2000a). Radwin and Lin (1993) 

found that single frequency motions were directly related to motion frequency but more 

complex activities often had multiple frequency components. Radwin et al. (1994) devised 

an approach analogous to a sound level meter using frequency-weighted filters based on 

psychophysical data for equivalent discomfort levels resulting from repetitive movements of 

different amplitudes and frequencies (Lin & Radwin, 1998a, 1998b; Lin, Radwin, & Snook, 

1997).
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Both observations and direct measurements are mostly limited to research studies and are 

often impractical for industry practitioners. Compared to instruments, indirect observation 

lacks precision and accuracy, is not suitable for long observation periods, and requires 

considerable analyst time (Lowe, 2004). Alternatively, attaching sensors on working hands 

is time consuming (Yen & Radwin, 2000b), and sensors may interfere with normal working 

operations. Not only is instrumentation use resource intensive, but the required technical 

knowledge often makes this approach inaccessible to practitioners. Considering these limits, 

recent protocols for musculoskeletal research often involved observation (Bonfiglioli, 2013; 

Burt, et al., 2011; Garg & Kapellusch, 2009; Garg, et al., 2012; Harris, et al., 2011; 

Kapellusch et al., 2013; Wurzelbacher et al., 2010).

Radwin, et al. (2014) developed an equation for estimating HAL based on measurements of 

F and D using data from Latko, et al. (1997) in order to continuously predict HAL values 

consistent with the TLV® look-up table. The equation:

(Equation 1)

More accurately predicted the Latko et al. (1997) data, particularly for F ≥ 1.25 Hz and D ≥ 

60% jobs. Such an equation can be utilized in an instrument for quantifying F and D to 

directly measure HAL.

It was recently demonstrated for stereotypical laboratory hand transfer tasks that HAL can 

be calculated using automated video analysis that employs semi-automatic marker-less 

tracking to directly measure F and D (Chen et al., 2013). A cross correlation-based template-

matching algorithm was programmed to track the motion trajectory of a selected region of 

interest over successive video frames for a single camera. Automatic measures of F however 

are challenging particularly when repetitive motion becomes more complex than simple 

cyclical motion patterns involving fundamental frequencies of motion and harmonics. 

Cyclical motion patterns are more easily identified for stereotypic motion but becomes more 

challenging for more complex motions that may not originate and terminate at the same 

location.

Since the HAL scale is anchored against speed of motion/exertions and rest pauses, we 

hypothesize that measures of hand speed would more directly measure and be better related 

to the HAL scale than F. In the current study we develop a new equation for computing 

HAL directly from tracked hand S (S equation) and D rather than relying on estimates of F 

(F equation) for an automated instrument to directly measure HAL.

2. Methods

The S equation was ascertained using regression analysis on data obtained from the Latko 

(1997) videos of 33 jobs and their associated HAL ratings, so that the new equation is 

consistent with the current HAL scale. Since the videos were not calibrated, a method for 

estimating distances to calculate hand speed was developed based on measuring the worker 

hand breadth measured in pixels directly from a video frame and statistically estimating 
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speed of motion. The resulting regression equation was then validated using independent 

videos of jobs and observational HAL ratings from Harris et al. (2011).

The videos for the 33 Latko (1997) jobs were digitized and a contiguous segment of the 

video was selected in which the most active hand was visible and representative of the 

overall task. It was not always possible to track the hand over an entire cycle for some jobs 

that had long cycle times due to camera movement and visual obstructions. In these cases 

video segments were analyzed when the active hand was visible and was representative of 

the motions performed in an entire cycle. A description of the 33 jobs, observed HAL, F, D 

and the video segment lengths analyzed, are summarized in Table 1.

Because the videos originated from 8mm format analog recordings, quality was often noisy 

and at times limited in contrast. A procedure was developed for reliably tracking the most 

active hand using a semiautomatic tracking algorithm backed up by multiple analysts. Video 

segments were first selected and a region of interest (ROI) centering on the hand was 

identified. The default dimensions for the ROI were 20 × 20 pixels, but depending on the 

size of the hand in the video, the analyst adjusted the ROI size. The hand ROI in the selected 

video segment was tracked using the video-tracking algorithm described in Chen, et al. 

(2013). After tracking the ROI, two independent analysts reviewed the tracked video frame-

by-frame in order to identify any deviations from the actual hand location, and manually 

corrected the tracked ROI when necessary. An additional analyst reviewed the segments 

tracked by the other analysts and settled any discrepancies greater than the half of the length 

of the ROI diagonal by correcting the discrepancy, or averaging both if the differences were 

less than half of the length of the ROI diagonal.

Hand speed magnitude in the x-y axes was measured from the corrected pixel ROI motion 

record using the equation: 

where px is the pixel location on the x axis, py is the pixel location on the y axis and 

Vxy,video is the difference between the pixel location for the previous and following video 

frame divided by two times the sample rate (since the numerator was two frames apart), 

which was 1/30 s.

Speed was first calculated in units of pixels per second and then converted into physical 

units of millimeters. Since the videos originate circa 1997 and were produced for a different 

purpose, no provisions were made for scaling the images against a standard unit of distance. 

A scaling procedure was therefore used based on the US Army (1991) hand breadth 

anthropometry survey data base. The analyst identified the active hand in each video 

segment and measured the hand breadth in units of pixels using MVTA software (Yen and 

Radwin, 1995). Hand breadth was used because of its small coefficient of variation of 0.046 

for males and 0.048 for females. Hand speed RMS was calculated using the equation:
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Where exertion time . This calculation is illustrated in Figure 1. The calibrated 

RMS speed (mm/s) is plotted against HAL in Figure 2.

In order to examine the effect of the variation of hand breadth on the scaled RMS speed and 

the predicted HAL values, a Monte Carlo method was employed such that a hand breadth in 

mm for each of the 33 jobs was randomly selected from a normal distribution with mean and 

standard deviation relative to gender based on the US Army (Greiner, 1991) hand 

anthropometry survey. The ratio of the randomly generated hand breadth to the measured 

pixel hand breadth was calculated and RMS speed was scaled to mm/s. A regression 

equation for HAL was first estimated, and another random set of hand breadth sizes were 

selected for each of 33 jobs and the equation estimate was repeated. This process was 

reiterated until all of the average regression coefficients converged to a difference less than 

10−6 from the previous average.

2.1 Linear Regression Equation

A linear regression equation for HAL was tested based on hand S and D for each set or 

randomly selected hand widths using the Monte Carlo method described above. The form of 

the regression equation was:

The predicted HAL value was calculated for each regression iteration for varying S and D, 

and the variation in HAL was calculated.

2.2 Logit Linear Regression Equation

Since the HAL scale is bounded by 0 and 10 and a linear regression can predict beyond that 

range, we considered an alternative approach. A sigmoidal logit-linear regression equation 

was fit to the data using a similar Monte Carlo method for estimating hand speed. First the 

HAL values were rescaled between 0 and 1 by dividing each value by 10. A log 

transformation of the independent variable RMS Speed was also performed. The logit linear 

regression equation was in the form:

where HAL is the hand activity level from Latko (1997), S is the measured RMS hand speed 

after scaling, and D is the percent duty cycle for each task.

2.3 Equation Validation

Videos of 30 industrial tasks were randomly selected from Harris, et al. (2011) for validation 

of the S equations. Tasks were excluded if the video recordings had breaks, corruptions or 

jumps, ambiguous task descriptions and if the task did not have corresponding expert HAL 

ratings. Based on above criteria, 5 tasks were excluded from the initial 30 random set and 5 
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new randomly selected tasks were substituted. The HAL range of included tasks were 

between 2 and 8. These were the same data used by Radwin et al. (2014) for validation of 

the F equation for HAL.

The videos were randomly assigned to three independent analysts and each task was 

analyzed by two analysts. The process for video hand tracking to find the hand speed is 

described above. After hand tracking was completed, an independent analyst confirmed the 

tracking results. MVTA single frame video analysis (Yen and Radwin, 1995) was performed 

to measure D for each task. Exertion time and rests period definitions were consistent with 

Latko (1997). Exertions were considered a unique application of force by a loaded hand, 

while rest was marked only when the hand was unloaded. At least 10 cycles of exertions and 

rest periods for each video segment were marked using MVTA software and the subsequent 

duty cycles were calculated directly.

3. Results

3.1 Linear Regression Equation

A summary of the linear regression equation for HAL is provided in Table 2. The regression 

coefficients for S and D were statistically significant for p<0.05. Convergence was achieved 

within 580 iterations using the Monte Carlo process. The average R2 was 0.82. The model 

was:

(Equation 2)

The upper boundary, lower boundary and means for these predictions are shown in Figure 3. 

The maximum difference between the upper bound and lower boundary was 0.25, 0.23, 

0.21, 0.20 and 0.19 for duty cycle of 10%, 30%, 50%, 70%, and 90% respectively. The 

assumption diagnosis plot, residuals versus predicted HAL, indicated no significant variance 

violation or independence violation and are shown in Figure 4.

3.2 Logit Linear Regression Equation

The logit-linear regression equation is summarized in Table 3 and is plotted in Figure 5. 

Regression coefficients for S and D were statistically significant for p<0.05. Convergence 

was achieved within 238 iterations using the Monte Carlo process. The average R2 for the 

logit-linear models model was 0.97 (Naglekeke, 1991, Faraway, 2004). The upper boundary, 

lower boundary and means for these predictions are shown in Figure 5. The maximum 

difference between the upper bound and lower bound was 0.26, 0.21, 0.14, 0.13 and 0.19 for 

duty cycle of 10%, 30%, 50%, 70%, and 90% respectively. A plot of the residuals versus 

predicted HAL, indicated no significant variance violation and independence violation, and 

is shown in Figure 6. The equation was:

(Equation 3)
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The residual range (Figure 6) was less than ± 0.5 HAL, which was considerably better than 

the linear regression equation.

3.3 Equation Validation

The linear regression (with intercept set to zero) between the linear equation predicted HAL 

and the observed HAL values had a slope of 0.88 (p<.001), R2=0.97, and is plotted in Figure 

7(a). The logit-linear equation predicted HAL and the observed HAL values had a slope of 

0.99 (p < .001), R2 = 0.99, and is plotted in Figure 7(b). The analysis of variance for the F 

equation and the S logit-linear equation are provided in Table 4. The mean square error for 

the non-linear regression equation for HAL based on F (Radwin at al. 2014) using the same 

30 randomly selected tasks found that the mean square error was 1.28. The mean square 

error for the same data set using the logit equation for S and D was 0.16.

4. Discussion

In this study we analyzed videos for the 33 jobs from Latko (1997) in order to find an 

association between the HAL scale, measured S and D. We considered estimating HAL 

using S rather than F because the HAL scale is inherently based on speed. Indeed this is 

consistent with the HAL scale anchors where HALs of 2–4 are labeled slow motions and 

HALs of 8–10 are labeled rapid motions. In addition, speed measurement lends itself more 

readily adaptable to automated processing.

In the linear equation, the significant coefficient for speed of 0.00465 indicates that every 

100 mm/s increase in RMS speed increases HAL approximately 0.5 units. Note that the 

range of speed was 162–1,288 mm/s (Table1). This increase is approximately the same as a 

10% increase in D; a 10% D increase yields a 0.53 increase in HAL. However in the logit-

linear equation the speed enters the equation with its log taken and the coefficient is 2.25. 

Since the relationship is not linear, a direct comparison is not possible. However we can 

provide some examples of how the speed and duty cycle changes affect HAL. When speed 

is 500 mm/s and there is a 57% duty cycle, the associated HAL value is 3.2 and a 100 mm/s 

increase in speed will increase the HAL by 0.95. The same amount of increase is gained by 

20% increase in duty cycle.

We conclude from the Monte Carlo simulation that hand breadth did not adversely affect the 

HAL prediction as a benchmark for scaling the hand speed. The use of hand breath was a 

convenient reference measure that showed little intra subject variation. The variation in 

HAL based on an average of 238 regressions from a random sampled set of hands showed 

little difference when normalized to hand breadth. For example, a worker has 355.6 pixels/s 

measured hand speed and using average male hand breadth (90.4 mm), the speed scaled to 

726.57 mm/s yielding HAL of 5.2.

If the worker had the maximum hand breadth in the population, which is 106 mm (US 

Army, 1991) then the speed will be scaled to 819.3 with HAL of 5.9. On the other hand, if 

the worker has the minimum hand breadth in the population, which is 77 mm, then speed 

would be 595.17 with HAL of 4.1. The above case is for extreme cases which is not typical. 

The 90th and 10th percentile hand breath yields HAL ranges in between 4.7 to 5.4 which 
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gives a maximum difference of 0.5 HAL. Thus an average hand breadth might be used to 

convert the speed from pixel/s to mm/s for videos when a calibration measure is not 

available. When videos are made using a reference calibration, the hand speed can be 

measured directly without the need to use hand breadth.

We validated our findings by using 30 randomly selected tasks from Harris, et al. (2011). 

The linear models under-predicted observer HAL, especially for the lower levels of HAL. 

The logit-linear S model had the best predictions of observed HAL. The predicted HAL 

values for the logit-linear S equation were consistent with observer rated HALs with mean 

square error of 0.16. For either model, the S equation better predicted observed HAL ratings 

when compared to the equation based on F (Radwin at al. 2014) which had a much greater 

mean square error of 1.28.

The use of hand speed was actually more consistent with the HAL values obtained from 

observation than using the frequency of exertion. The logit-linear S equation was 

substantially better (MSE=0.16) than the equation based on F (MSE=1.28) using the same 

30 randomly selected tasks as shown in Table 4 (Radwin at al. 2014). The current validation 

only studied 30 randomly selected jobs. Future work should consider a wide range of jobs 

that vary in frequency, duty cycle and speed.

The development of an accurate equation for estimating HAL ratings should better enable 

use of automated and objective measurements in practice. While expert observer HAL 

ratings offer speed and efficiency, use of objective measurements based on worker hand 

kinematics should provide greater reliability, as well as offering specific engineering aspects 

of the job that may be addressed for reducing exposures and the risk of musculoskeletal 

injuries. For instance, a practitioner can use such an equation for quantitatively predicting 

the benefit of increasing pauses or reducing speed of movements and exertions. 

Furthermore, automated video analysis may help improve the speed and efficiency of 

making objective measurements in practice.

Conclusions

Based on these findings, the following conclusions are made:

1. The logit-linear S equation provides a better fit to the original HAL data 

(MSE=0.422) than the linear S equation (MSE=0.998).

2. A Monte Carlo process demonstrated that hand speed can be acceptably estimated, 

when a distance reference measure is unavailable, by using the hand breadth 

measured from the video scaled to a population mean hand breadth (90.4 mm for 

males and 79.5 mm for females).

3. The equations were validated against a set of 30 task videos of actual workers 

independently rated on the HAL scale using the observation method. The logit-

linear S equation best predicted the observer HAL data (slope = 0.99, R2=0.99). 

The logit-linear S equation provided a better fit to the observed HAL validation 

data (MSE=0.16) than the linear S equation (MSE=0.81), and was substantially 

better than the linear regression F equation (MSE=1.28).
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4. Semi-automatic video analysis of HAL would benefit from use of the S equation, as 

well as single frame analyses of industrial jobs.
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Figure 1. 
Representative plot of speed v. time. RMS speed is calculated only during time periods 

when motion/exertions are performed.
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Figure 2. 
A plot of Hand Activity Level v. measured Root Mean Square (RMS) speed (S) estimated 

for the 33 jobs from Latko (1997)
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Figure 3. 
Plot of the linear equation for predicted HAL as a function of speed (S) and duty cycle (D). 

The solid line is the average regression line and the dotted lines represent the 0.1 percentile 

and 99.9 percentile of predicted HALs resulting from the Monte Carol process.
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Figure 4. 
Linear equation resuuals for Observed-Predicted HAL v. Predicted HAL, Observered HAL 

and RMS Speed.
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Figure 5. 
Plot of the logit-linear equation for predicted HAL as a function of speed (S) and duty cycle 

(D). The solid line is the average regression line and the dotted lines represent the 0.1 

percentile and 99.9 percentile of predicted HALs resulting from the Monte Carol process.
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Figure 6. 
Logit-linear equation resuuals for Observed-Predicted HAL v. Predicted HAL, Observered 

HAL and RMS Speed.
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Figure 7. 
Predicted HAL plotted against observer rated HAL (From Harris, et al., 2011) for (A) the 

linear S equation (Equation 2) and (B) the logit-linear S equaiton (Equation 3).
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Table 2

Summary of the Linear Regression Coefficients from Monte Carlo Simulation for Varying Hand Breadth 

(N=580)

Variable Min Average Max Standard Deviation

Intercept −1.4534     −1.16103 −0.9178 0.08095

RMS Speed (S) 0.0042 0.00465 0.0051 0.00016

Duty Cycle (D) 0.0498 0.05312 0.0562 0.00098

Mean Square Error 0.8569 0.9977 1.1723
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Table 3

Summary of the Logit-Linear Regression Coefficients from Monte Carlo Simulation for Varying Hand 

Breadth (N=580)

Variable Min Average Max Standard Deviation

Intercept −14.609 −13.492 −12.475 0.304

RMS Speed (S) 1.688 1.861 2.033 0.048

Duty Cycle (D) 0.023 0.026 0.028 0.000

Mean Square Error 0.2907 0.4221 0.5576
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